Anesthesia considerations for robotic thoracic surgery

Alexandra Ruan, Vivek Kulkarni


There is widespread interest in using robotic assistance in a number of surgical specialities, including thoracic surgery. Common thoracic operations performed with robotic assistance include lung resection, diaphragmatic repair, esophagectomy and mediastinal tumor resection. Robotic systems provide several unique advantages over traditional video-assisted thoracoscopic surgery (VATS) by providing a three-dimensional view of the surgical field and facilitating navigation in difficult to access spaces like the mediastinum. Additionally, the robotic approach can decrease pain, blood loss and scarring, and reduce hospital length of stay. However, unlike VATS, the robotic system presents several challenges that the anesthesiologist must be prepared to address. The bulkiness of the robot makes access to the patient difficult. Positioning is critical in order to prevent nerve compression and crushing injuries. Insufflation of carbon dioxide in the pleural cavity can have significant hemodynamic and respiratory effects. One-lung ventilation (OLV) is often performed with adequate muscle relaxation to prevent patient movement when the robotic arms are within the thorax. Reliable techniques used for OLV include a left-sided double-lumen tube and occasionally a bronchial blocker placed accurately with fiberoptic bronchoscopic assistance. Elimination of carbon dioxide can be problematic with prolonged surgery. Appropriate patient selection is essential for a successful operation. This review provides an overview of preoperative considerations and intraoperative anesthetic management for robotic-assisted thoracic surgery.